Recursive sparse recovery in large but structured noise - Part 2
نویسندگان
چکیده
We study the problem of recursively recovering a time sequence of sparse vectors, St, from measurements Mt := St + Lt that are corrupted by structured noise Lt which is dense and can have large magnitude. The structure that we require is that Lt should lie in a low dimensional subspace that is either fixed or changes “slowly enough”; and the eigenvalues of its covariance matrix are “clustered”. We do not assume any model on the sequence of sparse vectors. Their support sets and their nonzero element values may be either independent or correlated over time (usually in many applications they are correlated). The only thing required is that there be some support change every so often. We introduce a novel solution approach called Recursive Projected Compressive Sensing with cluster-PCA (ReProCS-cPCA) that addresses some of the limitations of earlier work. Under mild assumptions, we show that, with high probability, ReProCS-cPCA can exactly recover the support set of St at all times; and the reconstruction errors of both St and Lt are upper bounded by a time-invariant and small value.
منابع مشابه
ar X iv : 1 30 3 . 11 44 v 1 [ cs . I T ] 5 M ar 2 01 3 1 Recursive Sparse Recovery in Large but Structured Noise – Part 2
We study the problem of recursively recovering a time sequence of sparse vectors, St, from measurements Mt := St + Lt that are corrupted by structured noise Lt which is dense and can have large magnitude. The structure that we require is that Lt should lie in a low dimensional subspace that is either fixed or changes “slowly enough”; and the eigenvalues of its covariance matrix are “clustered”....
متن کاملReProCS: A Missing Link between Recursive Robust PCA and Recursive Sparse Recovery in Large but Correlated Noise
This work studies the recursive robust principal components’ analysis (PCA) problem. Here, “robust” refers to robustness to both independent and correlated sparse outliers, although we focus on the latter. A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background from moving foreground objects on-the-fly. The background seque...
متن کاملJoint Sparse Recovery Method for Compressed Sensing with Structured Dictionary Mismatch
In traditional compressed sensing theory, the dictionary matrix is given a priori, whereas in real applications this matrix suffers from random noise and fluctuations. In this paper we consider a signal model where each column in the dictionary matrix is affected by a structured noise. This formulation is common in problems such as radar signal processing and direction-of-arrival (DOA) estimati...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملRecovery guarantees for multifrequency chirp waveforms in compressed radar sensing
Radar imaging systems transmit modulated wideband waveform to achieve high range resolution resulting in high sampling rates at the receiver proportional to the bandwidth of the transmit waveform. Analog processing techniques can be used on receive to reduce the number of measurements to N , the number of potential delay bins. If the scene interrogated by the radar is assumed to be sparse consi...
متن کامل